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R Blümel

Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA

Received 21 March 2006, in final form 4 May 2006
Published 14 June 2006
Online at stacks.iop.org/JPhysA/39/8257

Abstract
The compressed delta atom is a one-dimensional version of the compressed
hydrogen atom where the finite-range Coulomb potential is replaced by a
zero-range delta function. The spectral equation of the compressed delta
atom is transcendental. Nevertheless, using recently developed quadrature
and absolutely convergent periodic-orbit expansion techniques, it can be solved
analytically, which yields its energy levels explicitly in the form En = f (n;p),
where n is the quantum number, p is a set of parameters characterizing the atom
and f , a function expressed as a quadrature or as an absolutely convergent sum
over periodic orbits, is the same for all n. The compressed delta atom may
serve as a template for the explicit, exact and analytical solution of other one-
dimensional quantum problems with potentials consisting of a superposition of
delta-function potentials and piecewise constant potentials.

PACS numbers: 03.65.Ge, 05.45.Mt

1. Introduction

Consider a gas of hydrogen atoms under a pressure exceeding tens of thousands of atmospheres.
Under such extreme conditions the atoms can no longer be considered free; their atomic orbitals
experience considerable compression, resulting in a reduction of their atomic volumes. The
simplest model describing a hydrogen atom under such exotic conditions is the compressed
hydrogen atom. It consists of a single hydrogen atom confined to a spherical box of radius
r0 < ∞. This model was first successfully employed close to 70 years ago by Michels,
De Boer and Bijl [1] for the computation of the kinetic energy and the polarizability of
pressurized hydrogen. Motivated by astrophysical considerations, the compressed hydrogen
atom soon attracted the attention of Sommerfeld and Welker [2], who improved the
mathematical theory of the ground state energy as a function of r0. In 1946 De Groot
and Ten Seldam [3] extended the mathematical work of Sommerfeld and Welker to include
the first two excited states of the compressed hydrogen atom.
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Apart from its relevance to the theory of highly compressed gases, the compressed
hydrogen atom is also interesting from the following purely theoretical point of view. Non-
relativistically, and assuming an infinite proton mass, the ground-state energy of the hydrogen
atom is given by [4]

EH = − m

2h̄2

(
e2

4πε0

)2

, (1)

where e is the elementary charge, ε0 is the electric permittivity of the vacuum, m is the
electron mass and h̄ is Planck’s constant. In 1954 Wigner asked the question whether the
hydrogen ground-state energy, according to (1) suggestively proportional to the second power
of the electron–proton coupling constant e2/(4πε0), could be obtained exactly in second order
perturbation theory using the unperturbed box wavefunctions of the compressed hydrogen
model as the basis states and letting r0 → ∞ [5]. While the answer to this question turns
out to be negative [5], ‘Wigner’s failure’ [6] provides an excellent pedagogical example for
illustrating the fine points of the convergence properties of perturbation series [5, 6].

A central point of this paper is to define what we mean by solving a (quantum) spectral
problem. Although often considered a ‘solution’ (see, e.g., [7]), in the context of this paper
mere reduction to its spectral equation does not qualify as a solution of a problem. In fact, the
spectral equation is only the starting point for obtaining the solution of a spectral problem.
For a problem with square-normalizable bound states only, we require a solution to be of the
form

En = f (n;p), n = 1, 2, . . . , (2)

where En are the energy levels, f is a known function, n is the quantum number labelling
the states and p is a set of parameters characterizing the problem. It is important to require
that f in (2) is the same for all n and all p. Only a few physically relevant systems are
solvable in the form (2). Examples are the unperturbed hydrogen atom and the harmonic
oscillator. Even though spherically symmetric, and therefore effectively one-dimensional, the
compressed hydrogen atom has not yet been solved in the form (2).

However, replacing the finite-range Coulomb potential with a zero-range, one-dimensional
delta-function potential [6, 7] leads to the compressed delta atom, whose spectrum is solvable
explicitly, exactly and analytically in the form (2) using recently developed periodic-orbit
expansion techniques [8, 9]. With the confining walls located at x = 0 and x = b > 0,
respectively, and the δ function located at x = a with 0 < a < b, the potential of the
compressed delta atom is

V (x) =



∞, for x � 0,

Vδ(E)δ(x − a), for 0 < x < b,

∞, for x � b,

(3)

where the argument E of the strength Vδ of the delta-function potential indicates a possible
energy dependence (see section 5). Although mathematically simpler, the compressed delta
atom preserves the main analytical feature (the main difficulty) of the compressed hydrogen
problem: its spectral equation is transcendental. For this reason, neither the compressed
hydrogen atom nor the compressed delta atom has ever been solved before.

The results presented in this paper may be seen in the context of periodic-orbit theory
[10]. But while ‘conventional’ periodic-orbit theory [10] provides periodic-orbit expansions
of the density of states or the spectral functions of a quantum system, the direct expansion of
the spectral eigenvalues themselves into a periodic-orbit series is a new direction in quantum
mechanics [9, 11]. Expansions of this type satisfy the solution requirement (2). Recently a
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program has been outlined [9] of how to obtain explicit, exact and analytical periodic-orbit
expansions of the type (2) for all one-dimensional quantum problems whose potentials can be
represented as a sum of piecewise constant potentials and delta-function potentials. In partial
fulfilment of this program a step-in-the-box potential with a non-trivial spectral equation has
been solved in all energy regimes [9, 11–13]. Recently the finite quantum square well has
been added to the list of problems solvable in the form (2) [14]. This paper adds one more
solvable system to the still small set of explicitly solved problems: the compressed delta atom.
The step-in-the-box potential, the finite square well and the compressed delta atom solved
here may be used as templates to solve additional quantum systems explicitly in the form (2).

The paper is organized in the following way. Section 2 analyses the overall spectral
properties of the compressed delta atom. Section 3 presents exact, explicit solution formulae
of the positive-energy spectrum. The negative-energy state is investigated in section 4. If we
assume that the strength of the δ function is proportional to the momentum, a scaling version
of the compressed delta atom results. Section 5 shows how in the scaling case integral-
free, explicit solutions of the spectrum can be constructed. Curiously, the number-theoretic
properties of the placement of the δ function between the two potential walls matter. Section 6
discusses the consequences of ‘rational placement’, i.e., the ratio of the distances of the δ

function from the two walls, respectively, is rational. The convergence properties of the
explicit solution formulae are investigated in section 7. Section 8 discusses the results and
section 9 summarizes and concludes the paper. Appendix A establishes a connection between
the present paper and a previous publication on the solution of the finite quantum square
well [14] by showing that the results presented in [14] yield the bound-state energy of an
attractive δ function in the limit of an infinitely deep, but narrow well with the product of the
depth and width of the well kept constant. This is an important check of a set of previously
obtained explicit solution formulae whose derivation qualitatively follows the solution methods
employed in this paper.

2. Organization of the spectrum

Although it is possible to construct potential functions Vδ(E) for which the compressed delta
atom has a continuous spectrum (see section 8.5), in the generic case (see, e.g., sections 2
and 3 for Vδ(E) ≡ const and section 5 for Vδ(E) ∼ √

E), since the delta atom is confined
between two infinitely high potential walls, its spectrum is pure point and all of its physical
eigenstates are square-normalizable bound states. Therefore, the aim is to compute its
spectrum in the form (2). In preparation for section 3, where this goal is achieved, we
derive, in section 2.1, the positive- and negative-energy spectral equations. In section 2.2
we investigate the global properties of the spectrum. In particular, we show the existence
of non-overlapping root intervals containing precisely one spectral point each. This is the
key for the explicit computation of the spectrum according to (2) in section 3. In section 2.3
we derive an alternative form of the spectral equations which plays a prominent role for the
explicit computation of spectral points in section 3.

2.1. Spectral equations

The Schrödinger equation of the non-relativistic delta atom is

− h̄2

2m
ψ ′′(x) + V (x)ψ(x) = Eψ(x), (4)

where E is the energy and V (x) is defined in (3). Using the hard-wall (Dirichlet) boundary
conditions ψ(0) = ψ(b) = 0 together with the continuity of the wavefunction at x = a and
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the δ-function boundary condition limε→0 ψ ′(a + ε) − ψ ′(a − ε) = 2mVδψ(a)/h̄2 [4], we
obtain the transcendental spectral equation

g(k; v, ω) = 0, (5)

where

g(k; v, ω) = v cos(k) − k sin(k) − v cos(ωk) (6)

with

k = ±b
√

2mE/h̄, v = mVδb/h̄2, ω = (2a − b)/b. (7)

In (7) k is the dimensionless wave number, v is the dimensionless strength of the δ-function
potential and −1 < ω < 1 measures the asymmetry of the placement of the δ-function
potential; ω = 0 corresponds to symmetric placement of the δ-function potential. Since (6) is
symmetric in ω ↔ −ω, we focus, without loss of generality, on 0 � ω < 1.

The spectral equation (5) has both real and imaginary solutions. The k ↔ −k symmetry
of (6) allows us, without loss of generality, to choose k � 0 for real solutions of (5) and
Im(k) � 0 for imaginary solutions of (5). For E < 0, with k = iκ (κ real), the real version of
(5) is

h(κ; v, ω) = 0, (8)

where

h(κ; v, ω) = v cosh(κ) + κ sinh(κ) − v cosh(ωκ). (9)

For v > 0, (9) is positive definite. Therefore there is no non-trivial solution which corresponds
to a physical bound state. Real, non-trivial solutions of (8) exist only for v < vc(ω) < 0,
where

vc(ω) = 2

ω2 − 1
(10)

is determined exactly with the help of a fourth-order Taylor-series expansion of (9). For
v < vc < 0 and κ > 0, we write (8) in the form

h̃(κ; v, ω) = 0, (11)

where

h̃(κ; v, ω) = κ

2|v| {coth[κ(1 − ω)/2] + coth[κ(1 + ω)/2]} − 1. (12)

Since for x > 0 the function x coth(x) is monotonically increasing, h̃(κ; v, ω) is a
monotonically increasing function of κ . Since h̃(0; v, ω) = |vc/v| < 1, (11) ((8), respectively)
has exactly one non-trivial solution κ1. For v → vc, κ1 → 0.

We denote the physical solutions of (5) by kn(v;ω), n = 1, 2, . . . . For v � vc, all kn are
real. For v < vc, we set k1 = iκ1. We order the kn such that the energies

En = h̄2k2
n(v;ω)

2m
(13)

are arranged in ascending order, i.e. En � En+1, n = 1, 2, . . . .

We note that k = 0 (κ = 0) is always a solution of (5) ((8), respectively). However, for
k = 0 (κ = 0), the wavefunction is identically zero and does not therefore correspond to a
physical, square-normalizable state. Such a state contains no particles. Therefore we do not
count the k = 0 (κ = 0) solution among the physical states of the system.
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Figure 1. Spectrum of the compressed delta atom as a function of the dimensionless potential
strength v for asymmetry parameter ω = π/6. The first six levels (solid lines) are shown. The
level corresponding to the negative-energy state is plotted as −κ1. The horizontal, dotted lines,
plotted at integer multiples of π , are the root separators of the spectrum. They define the root
intervals to which the spectral lines are confined.

While (5) is difficult to solve for generic v and irrational ω, explicit solutions of (5) can be
obtained for rational ω. For ω = P/Q, where P and Q are positive, relatively prime integers,
and N = 1, 2, . . . ,

kN =
{
NQπ, for both P and Q odd,

2NQπ, otherwise
(14)

are solutions of (5) for all v since sin(kN) = 0 and cos(kN) = cos(ωkN) = ±1. It includes
the case ω = 0 if we choose P = 0,Q = 1. Physically the solutions (14) correspond to
unperturbed box wavefunctions. They are exact solutions of the perturbed problem because
they have a node at the position of the δ function and thus do not ‘feel’ the presence of the
δ-function potential.

2.2. Spectral properties and root separators

Figure 1 shows the spectrum of the compressed delta atom as a function of v for ω = π/6. The
energy levels kn(v;ω) (κ1(v;ω), respectively) (full lines), labelled from the bottom up with
the quantum number n, are monotonically increasing as a function of v. They never cross;
they are clearly separated from each other. In particular, except at v = 0, the energy levels
never cross the horizontal, dotted lines in figure 1 drawn at integer multiples of π . These lines
separate energy levels with different n from each other. This observation, proved below, is
significant. It is the key for obtaining explicit expressions for the energy levels.

For v = 0, the δ function in (3) is switched off and the spectrum is the one of a quantum
particle in a box with infinite walls. In this case, as confirmed by figure 1, the spectrum is

kn(v = 0;ω) = nπ, n = 1, 2, . . . . (15)

For fixed ω, the slope of the spectrum as a function of v is obtained by implicit differentiation
of (5):

k′
n(v;ω) = ∂

∂v
kn(v;ω) = cos(kn) − cos(ωkn)

(v + 1) sin(kn) + kn cos(kn) − vω sin(ωkn)
. (16)
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From (16) we obtain

k′
n(v = 0;ω) = 2

nπ
sin2

[
nπ

(
ω + 1

2

)]
. (17)

According to (17), k′
n(v = 0;ω) has four important properties: (i) it is �0 for all n; (ii) it

may be zero only for rational ω; (iii) it is quasi-random for irrational ω; (iv) it approaches
zero for n → ∞. The first three properties are reflected in figure 1: all energy levels plotted
in figure 1 have positive slope illustrating property (i). Since ω = π/6 = 0.523 . . . is close
to 1/2, level n = 4 in figure 1, for which ωnπ ≈ 2π , is near degenerate with the horizontal
dotted line at k = 4π , illustrating property (ii). Although only a few energy levels are plotted
in figure 1 there does not seem to be any apparent rule to the slopes of the energy levels at
v = 0, illustrating property (iii).

The aim now is to establish isolating intervals [k<
n (v;ω), k>

n (v;ω)] ([κ<
1 (v;ω), κ>

1 (v;ω)],
respectively) in which only the state kn (κ1), and no other, is found. Since k<,>

n (v;ω)

(κ
<,>
1 (v;ω), respectively) separate the different roots of (5) ((8), respectively) from each

other, they are called root separators; the intervals [k<
n (v;ω), k>

n (v;ω)] ([κ<
1 (v;ω), κ>

1 (v;ω)],
respectively) are called root intervals [9].

Since the levels (14) are known explicitly, it is straightforward to establish root intervals
for them. We will do this at the end of this section. Meanwhile we focus on energy levels
different from (14). We call them generic levels. All levels corresponding to irrational ω, and
all levels corresponding to rational ω, but not satisfying (14), fall into this category.

Consider the case v > 0 as a function of increasing v. At v ≈ 0, v > 0, the level kn(v;ω)

is injected into the interval (nπ, (n+1)π), from which it can never escape, since escape means
crossing the lines k = nπ or k = (n + 1)π . But this is impossible, since for a generic level
kn, kn = Mπ,M integer, is not a solution of (5). For rational ω this is trivially so because of
the definition of a generic level. For irrational ω it would imply that Mω is an integer, which
is impossible.

We obtain the important result that for v > 0 a generic level kn(v;ω) is confined to the
open interval (nπ, (n + 1)π). Similar considerations for v < 0 show that for n > 1 the level
kn(v;ω) is confined to the open interval ((n − 1)π, nπ). For vc < v < 0, this holds for
n = 1, too, while for v < vc, as shown in figure 1, the energy level k1(v;ω) turns into the
negative-energy bound state. In summary, and in the generic case, we obtain the following
root separators for the E > 0 spectrum:

k<
n (v;ω) =




nπ for v > 0,

(n − 1)π for n > 1 and v < 0,

0 for n = 1 and vc < v < 0,
(18)

k>
n (v;ω) = k<

n (v;ω) + π.

We now turn to the case E < 0. Since κ1 > 0 for a non-trivial bound state, we may
choose κ<

1 = 0. In order to obtain κ>
1 , we write (11) in the form

κ = 2|v|
coth[κ(1 − ω)/2] + coth[κ(1 + ω)/2]

. (19)

With coth(x) > 1 for x > 0 we obtain κ < |v|. Therefore, we can choose |v| as the root
separator κ>

1 . In summary, for E < 0,

κ<
1 = 0, κ>

1 = |v|. (20)

As illustrated in figure 1, generic levels kn(v;ω) are monotonically rising functions of v.
We already showed above that for a generic level k′

n(v;ω) > 0 for v = 0. Since k′
n(v;ω) is
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a continuous function of v, k′
n(v;ω) may turn negative only if it first passes through zero. In

order to show that this is impossible we use (5) to write (16) in the form

k′
n(v;ω) = kn sin(kn)

v(v + 1) sin(kn) + vkn cos(kn) − v2ω sin(ωkn)
. (21)

Since kn(v;ω) > 0, k′
n(v;ω) = 0 is possible only if kn is a multiple of π . But, as proved

above, this does not happen for generic levels. Therefore we established that kn(v;ω) is
indeed a monotonically rising function of v.

So far we showed that generic E > 0 levels kn(v;ω) (i) satisfy k′
n(v;ω) > 0 for all v

and (ii) are confined to their respective root intervals. There is only one way to reconcile (i)
and (ii): kn(v;ω) has to be asymptotically constant for |v| → ∞. Writing (5) in the form
v[cos(k) − cos(ωk)] = k sin(k) shows that the asymptotic values of kn(v;ω) for |v| → ∞
satisfy the equation

cos(k) = cos(ωk), (22)

since kn sin(kn) is asymptotically constant and finite. Equation (22) is solved in section 8.4.
Since (22) is independent of the sign of v it follows that the asymptotic value of kn for v → +∞
is the same as the asymptotic value of kn+1 for v → −∞. As an interesting aside this shows
that if we identify the points v = ±∞, the topology of the energy levels of the compressed
delta atom is the one of a single spiral wound on the surface of a cylinder.

We now return to the problem of determining a root interval for the levels (14). Let kn

be one of the levels (14) and kn−1 and kn+1 the two neighbouring, generic levels. Because of
the property, proved above, that kn−1 for v → +∞ has the same asymptotic value as kn for
v → −∞, and since kn is a constant, kn−1 approaches the level kn for v → ∞. Moreover, since
kn is a multiple of π, kn−1 approaches the upper limit of its root interval for v → ∞. This is not
a problem for the level kn−1, but it is a nuisance for determining a root interval for the level kn.
Still, a straightforward, if cumbersome, fix exists. To determine a root interval for kn at some
finite value of v, one first determines kn−1(v;ω) and kn+1(v;ω) using the methods outlined in
sections 3–5. Then, suitable root intervals for kn are [(kn−1(v;ω) + kn(v;ω))/2, kn + π ] for
v > 0, and [kn − π, (kn(v;ω) + kn+1(v;ω))/2] for v < 0. This concludes the determination
of root intervals for any level kn(v;ω) for any given values of v and ω. Since each spectral
point is confined to a root interval whose end-points, for finite v, are off limits to the spectral
point enclosed, the spectrum of the compressed delta atom is non-degenerate.

2.3. Alternative form of the spectral equations

For later use in sections 3 and 7 we derive here a set of spectral equations, which, for E > 0,
are equivalent to (5).

Defining

�(k; v) = arccos

[
v√

v2 + k2

]
, 0 � �(k; v) � π, (23)

we write (5) in the form

cos[k + �(k; v)] = v√
v2 + k2

cos(ωk). (24)

Using symmetry and 2π -periodicity of the cosine function, (24) is equivalent to the following
two types of transcendental spectral equations

f (±)(k; v, ω) = 2Nπ, N = 1, 2, . . . , (25)
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where

f (±)(k; v, ω) = k + �(k; v) ± 	(k; v, ω) (26)

with

	(k; v, ω) = arccos{cos[�(k; v)] cos(ωk)}, 0 � 	(k; v, ω) � π. (27)

The solutions of (25) are denoted by k
(±)
N (v;ω).

We establish a mapping between the index N of the spectral equations (25) and the index
n, which enumerates the spectrum as a function of increasing energy as illustrated in figure 1.
Because of �(k; v = 0) = π/2 and 	(k; v = 0, ω) = π/2, we have

k
(+)
N (v = 0;ω) = (2N − 1)π, k

(−)
N (v = 0;ω) = 2Nπ. (28)

This shows that for v = 0 the levels k
(+)
N represent the odd-n ladder of states, while the levels

k
(−)
N represent the even-n ladder. Accordingly, we have

N =
{
n/2 for n even,

(n + 1)/2 for n odd.
(29)

For n = 1, the equivalence holds for v > vc.

3. Positive-energy spectrum

This section provides explicit, exact series expansions of the energy eigenvalues of the
compressed delta atom. We proceed in the following way. In section 3.1 we re-derive
the spectral equation (5) via scattering quantization [15, 16] based on the scattering matrix
S of the compressed delta atom and express the eigenvalues (eigenphases) of the S matrix
in terms of the spectral functions (26). In section 3.2 we use the S matrix to construct the
staircase function N(k) of the energy levels of the compressed delta atom and use N(k) to
obtain an explicit solution of the energy levels in integral form. An explicit solution of the
energy spectrum via periodic-orbit expansions is presented in section 3.3.

3.1. Spectral equation via S matrix

In this section we consider the quantization problem of the compressed delta atom from the
scattering point of view. We define four scattering channels. They correspond, respectively,
to quantum flux moving left-to-right from x = 0 to x = a (channel 1), right-to-left
from x = a to x = 0 (channel 2), left-to-right from x = a to x = b (channel 3) and right-
to-left from x = b to x = a (channel 4). Denoting by Sjl the amplitude for scattering from
channel number l to channel number j , the scattering matrix (S matrix) of the compressed delta
atom is

S =




0 −eiSI 0 0
r eiSI 0 0 t eiSII

t eiSI 0 0 r eiSII

0 0 −eiSII 0


 , (30)

where

SI = k(1 + ω)/2, SII = k(1 − ω)/2 (31)

are the classical actions of a particle moving from x = 0 to x = a (SI ) and from x = a to
x = b (SII ), respectively, and

r = v

ik − v
, t = ik

ik − v
(32)
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are the quantum reflection and transmission amplitudes for a δ-function potential [17]. Because
of r∗t + rt∗ = 0, the S-matrix (30) is unitary. Because of the unitarity of S its eigenvalues

j, j = 1, . . . , 4, are unimodular. They can be written in the form 
j = exp(iσj ) with real
phases σj (eigenphases of S). Although S is a 4×4 matrix, its diagonalization involves only the
solution of quadratic equations since the compressed delta atom is time-reversal symmetric.
Therefore S can be diagonalized analytically. We obtain

σ1 = 1
2f (+)(k; v, ω), σ2 = σ1 + π,

(33)
σ3 = 1

2f (−)(k; v, ω), σ4 = σ3 + π,

where f (±) in (33) are the spectral functions (26). According to (25), a spectral point is
encountered whenever f (+) (f (−), respectively) is a multiple of 2π . In this case, according
to (33), at least one of the eigenphases σj is a multiple of 2π . Since σ1 and σ2 (σ3 and σ4,
respectively) always differ by π , and since (see section 2, and apart from v = vc, which results
in a doubly degenerate, trivial solution k = 0) the spectrum of the compressed delta atom is
non-degenerate, a spectral point is encountered whenever exactly one of the eigenphases σj is
a multiple of 2π .

This ‘2π -criterion’ for the S-matrix eigenphases can also be derived as follows. The S
matrix transforms incoming flux into outgoing flux. A stationary state ψ , i.e. a spectral point,
is encountered whenever Sψ = ψ . From this we obtain [S − 1]ψ = 0, which, for non-trivial
ψ , requires det[S − 1] = 0. We obtain

det[S − 1] = 2 eik

v − ik
g(k; v, ω), (34)

where g(k; v, ω) is the spectral function (6). Thus, indeed, since the pre-factor in (34) is never
zero, det[S − 1] = 0 is equivalent with the spectral equation (5). Moreover, det[S − 1] = 0
whenever one of the eigenvalues 
j of S is 1, i.e., whenever one of the eigenphases σj is a
multiple of 2π . This confirms the 2π criterion.

3.2. Explicit solution by reduction to quadratures

For E > 0, define the staircase function

N(k) = ni(v) − 1 +
∞∑

n=ni (v)

θ(k − kn), (35)

where

ni(v) =
{

1, if v > vc,

2, if v < vc

(36)

and

θ(x) =



0, if x < 0,
1
2 , if x = 0,

1, if x > 0
(37)

is Heavisides’s step function. The function (35) jumps by one unit whenever its argument
encounters a spectral point kn. Thus (35) counts the total number of states (including, if it
exists, the negative-energy state) with kn � k and the convention that if k = kn, the state kn

counts as 1/2 of a state. The derivative of the staircase function (35) is the density of states

ρ(k) = d

dk
N(k) =

∞∑
n=ni (v)

δ(k − kn). (38)
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We define the normalized staircase function

�2π (x) = −1

2
+

x

2π
+

1

π

∞∑
m=1

sin(mx)

m
. (39)

It is zero in (0, 2π) and jumps by one unit whenever its argument x is an integer multiple of
2π . We use (39) and the ‘2π -criterion’ of the S-matrix eigenphases σj of section 3.1 to obtain
an alternative expression for the staircase function

N(k) =
4∑

j=1

�2π (σj ). (40)

This expression can be turned into an explicit formula for N(k) by inserting the S-matrix
eigenphases (33) into (40). We obtain

N(k) = −1 +
k

π
+

1

π
arccos

(
v√

v2 + k2

)
+

2

π

∞∑
m=1

1

m

{
sin(mk)Tm

(
v√

v2 + k2

)

+
k√

v2 + k2
cos(mk)Um−1

(
v√

v2 + k2

)}
Tm

(
v√

v2 + k2
cos(ωk)

)
, (41)

where

Tn(x) =
[n/2]∑
m=0

�nmxn−2m, �nm = (−1)m
n(n − m − 1)!

m!(n − 2m)!
2n−2m−1 (42)

and

Un(x) =
[n/2]∑
m=0

ϒnmxn−2m, ϒnm = (−1)m
(n − m)!

m!(n − 2m)!
2n−2m (43)

are Chebyshev’s polynomials of the first and second kinds, respectively [18]. The symbol [x]
in (42) and (43) denotes the integer part of x, i.e., [x] is the largest integer �x. Since the
spectral point kn, and only kn, is located between the root separators k<

n and k>
n , we compute

kn with the help of the density of states (38):

kn =
∫ k>

n

k<
n

kρ(k) dk. (44)

A partial integration yields

kn = nk>
n − (n − 1)k<

n −
∫ k>

n

k<
n

N(k) dk. (45)

Thus the problem of computing kn is reduced to a quadrature. Since all the quantities on the
right-hand side of (45) are known, kn is now known explicitly.

Some of the integrals in (45) can be done analytically. We obtain

kn = (n + 1)k>
n − nk<

n − 1

2π

[(
k>
n

)2 − (
k<
n

)2] − 1

π

[
ϕ
(
k>
n ; v

) − ϕ
(
k<
n ; v

)]
− 2

π

∞∑
m=1

1

m

∫ k>
n

k<
n

{
sin(mk)Tm

(
v√

v2 + k2

)

+
k√

v2 + k2
cos(mk)Um−1

(
v√

v2 + k2

)}
Tm

(
v√

v2 + k2
cos(ωk)

)
dk, (46)
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where

ϕ(k; v) = k arccos

(
v√

v2 + k2

)
− v

2
ln(v2 + k2), k > 0. (47)

The result (46) solves the problem of obtaining an explicit, exact and analytical expression for
the spectral points kn in the form kn = f (n; v, ω), where f is the same for all n. The result
(46) is not the only way of computing kn. In the following section we go one step further and
derive an exact periodic-orbit expansion for the spectral points kn. Apart from presenting an
alternative expression for kn, it adds physical insight to the solution formulae, since each term
in the expansions has a direct physical interpretation.

3.3. Binary necklaces

In this section we derive an exact formula for kn which is based on classical periodic orbits.
These orbits can be enumerated and manipulated with the help of symbolic dynamics [10] and
the theory of binary necklaces [8, 19].

A symbolic dynamics for the compressed delta atom is obtained if we label the left-hand
and right-hand potential walls with the symbols L and R, respectively. This way any orbit,
Newtonian or non-Newtonian [20], bouncing between the two walls, or between the walls and
the δ-function potential, can be coded with binary words [9, 12, 13]. An example is the word
w = LLR. It corresponds to a classical trajectory originating somewhere between the left-
hand wall and the δ-function potential with a velocity directed toward the left-hand potential
wall, bouncing off the left-hand potential wall (symbol L), then bouncing off the δ-function
(no symbol necessary) and heading back to the left-hand potential wall, bouncing off this
wall (symbol L), then transmitting through the δ-function potential (no symbol necessary),
bouncing off the right-hand wall (symbol R), and after a second transmission through the
δ-function potential completing its journey by joining up with its starting point. Apparently,
compared to the verbal description of the history of this trajectory, the symbolic description
is very concise. On the other hand, as indicated by the phrase ‘ . . . originating somewhere
between . . . ’, the symbolic description does not convey all the information on the history of a
classical trajectory. In the case of periodic orbits, however, and only these are needed for the
explicit formulae below, the start- and end-points of a classical trajectory are irrelevant, and
the symbolic description conveys all we need to know about a particular classical orbit.

A word w is turned into a necklace ŵ with the help of the ‘hat function’ ˆ. Words
and necklaces are different. Words are linear strings of symbols, with a beginning and an
end, while necklaces are symbol strings that are interpreted cyclically. In fact this is where
the word ‘necklace’ comes from—by imagining the symbols arranged in a circle like pearls
in a necklace. We use words to describe trajectories that have a beginning and an end;
we use necklaces to describe periodic orbits without beginning or end. To illustrate, while
w1 = RLL and w2 = LRL are two different words, turning them into necklaces, they are
equal, i.e., w1 
= w2, but ŵ1 = ŵ2. Although, in general, necklaces may contain an arbitrary
number of different symbols, the two symbols L and R suffice for the purposes of this paper.
Necklaces constructed from two symbols are called binary necklaces.

Next, we define functions that take words or necklaces as arguments. An example of a
word function is l(w). It counts the number of symbols in w. Its necklace analogue is the
necklace function l̂(ŵ), which returns the number of symbols in ŵ. Apparently l(w) = l̂(ŵ).
We also define the necklace functions n̂L(ŵ) and n̂R(ŵ), which count the number of symbols
L and R in ŵ, respectively. Apparently we have l̂(ŵ) = n̂L(ŵ) + n̂R(ŵ). In addition to the
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necklace functions l̂, n̂L and n̂R, we define the following two necklace functions, which will
turn out to be useful later:

α̂(ŵ) = n̂LL(ŵ) + n̂RR(ŵ), β̂(ŵ) = n̂LR(ŵ) + n̂RL(ŵ), (48)

where n̂LL, n̂LR, n̂RL and n̂RR count the number of LL,LR,RL and RR pairs in ŵ,
respectively. We have to be careful to keep in mind that necklaces are defined cyclically.
If, e.g., ŵ = RR then n̂RR(ŵ) = 2, although the word w = RR contains only one RR pair.
But recalling that a necklace is a word ‘wrapped around’, with symbols arranged in a circle,
it becomes clear that n̂RR(ŵ) = 2, not 1.

In order to derive a periodic-orbit expansion for the spectral points kn, our first goal is
the derivation of a periodic-orbit expansion of the staircase function (35). Again we start with
(40), but proceed in such a way as to obtain an explicit expression of N(k) in terms of the S
matrix itself

N(k) = −1 +
k

π
+

1

π
arccos

(
v√

v2 + k2

)
+

1

π

4∑
j=1

∞∑
m=1

sin(mσj )

m

= −1 +
k

π
+

1

π
arccos

(
v√

v2 + k2

)
+

1

2π
Im Tr

∞∑
m=1

1

m
S2m(k), (49)

where we used the fact that Tr S2m+1 = 0 for all m. Writing out the first few traces of the even
powers of S, with S defined in (30), shows that

Tr S2m = 2(−1)m
∑

w,l(w)=m

rα̂(ŵ)t β̂(ŵ) e2iσ̂ (ŵ)k, (50)

where

σ̂ (ŵ) =
(

1 + ω

2

)
n̂L(ŵ) +

(
1 − ω

2

)
n̂R(ŵ). (51)

Note that the sum in (50) is over the 2m words that can be formed with m symbols L,R, but
that these words are turned into binary necklaces by the functions α̂, β̂ and σ̂ occurring in the
exponents of (50).

Since any word w can be broken up into ν � 1 repetitions of its shortest building block
wp (which may be w itself, in which case ν = 1), and since (50) is invariant under cyclic
permutations of the symbols in w, we can write (50) in the form

Tr S2m = 2
∑
ŵp

∑
νl̂(ŵp)=m

l̂(ŵp)[(−1)l̂(ŵp)r α̂(ŵp)t β̂(ŵp)]ν e2iνσ̂ (ŵp)k, (52)

where the sum is over all primitive binary necklaces ŵp, i.e., necklaces that cannot be broken
down into repetitions of shorter binary necklaces. We use (52) to obtain a periodic-orbit
expansion of the staircase function (35). With m = νl̂(ŵp) we obtain from (49)

N(k) = −1 +
k

π
+

1

π
arccos

(
v√

v2 + k2

)

+
1

π
Im

∞∑
m=1

∑
ŵp

∑
νl̂(ŵp)=m

1

ν
[(−1)l̂(ŵp)r α̂(ŵp)t β̂(ŵp)]ν e2iνσ̂ (ŵp)k. (53)

Using (53) in (45) we obtain an exact, explicit periodic-orbit expansion of the spectral points
kn of the compressed delta atom
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kn = (n + 1)k>
n − nk<

n − 1

2π

[(
k>
n

)2 − (
k<
n

)2] − 1

π

[
ϕ
(
k>
n ; v

) − ϕ
(
k<
n ; v

)]
− 1

π
Im

∞∑
m=1

∑
ŵp

∑
νl̂(ŵp)=m

1

ν

∫ k>
n

k<
n

[(−1)l̂(ŵp)r α̂(ŵp)t β̂(ŵp)]ν e2iνσ̂ (ŵp)k dk. (54)

Each term in the necklace sum of (54) has a direct physical interpretation. We see this in the
following way. Each necklace ŵp corresponds to a classical periodic orbit. Thus, each LL
or RR pair in (54) can be interpreted physically as a reflection off the δ-function potential.
In the same way each LR or RL pair in (54) corresponds to a transmission through the
δ-function potential. Since α̂(ŵp) is the sum of all LL and RR pairs in ŵp, it corresponds
physically to the total number of reflections off the δ-function potential. Similarly β̂(ŵp)

counts the total number of transmissions. Since each reflection off the walls of the potential at
x = 0, b contributes a phase factor −1, the term in square brackets under the integral sign in
(54) corresponds physically to the total reflection and transmission amplitude of the classical
periodic orbit represented by ŵp. The exponential term is an action-dependent phase factor
akin to the one that appears in Gutzwiller’s trace formula [10] or Feynman’s path integral [21].
Thus (54) solves the problem of obtaining a physical series expansion of kn in the spirit of (2).

4. Negative-energy state

As discussed in section 2.1, a negative-energy solution κ1 of (8) exists only for v < vc, where
vc is defined in (10). Evaluating h̃(κ; v, ω), defined in (12), at the root separators (20), and
using |v| > |vc| for a non-trivial κ1 to exist, we obtain h̃(κ<

1 ; v, ω) < 0 and h̃(κ>
1 ; v, ω) > 0.

In addition, using the fact, proved in section 2.1, that h̃(κ; v, ω) is a monotonically increasing
function of κ , we obtain |h̃(κ; v, ω)| < 2π in the entire root interval κ<

1 = 0 � κ � κ>
1 = |v|.

Therefore, since h̃(κ1; v, ω) = 0, we may choose the following explicit form of the E < 0
staircase function,

N(κ) = �2π [h̃(κ; v, ω)] + 1 = 1

2
+

h̃(κ; v, ω)

2π
+

1

π

∞∑
m=1

1

m
sin[mh̃(κ; v, ω)]. (55)

This result can now be used to obtain κ1 explicitly via quadrature

κ1 =
∫ |v|

0
κρ(κ) dκ = |v| −

∫ |v|

0
N(κ) dκ. (56)

5. The scaling case

A potential strength linearly dependent on the momentum,

v = ηk, (57)

where η is a (positive, or negative) constant, defines the scaling, compressed delta atom.
A possible experimental realization of the scaling, compressed delta atom is discussed in
section 8.1.

5.1. Spectral equations and structure of the scaling spectrum

In the scaling case the E > 0 spectral equation is

gs(k; η, ω) = 0, (58)
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where the spectral function gs , obtained from (6), is given by

gs(k; η, ω) = η cos(k) − sin(k) − η cos(ωk). (59)

For the computation of the spectrum of special cases in section 6 it is convenient to rewrite
(58) (with (59)) according to

−2η sin

[(
1 + ω

2

)
k

]
sin

[(
1 − ω

2

)
k

]
= sin(k) (60)

or, if sin[k(1 − ω)/2)] sin[k(1 + ω)/2] 
= 0,

cot

[(
1 + ω

2

)
k

]
+ cot

[(
1 − ω

2

)
k

]
= −2η. (61)

In the case E < 0 the spectral equation is

hs(κ; η, ω) = 0, (62)

where hs(κ; η, ω), obtained from (8) with v = ηκ , is

hs(κ; η, ω) = η cosh(κ) + sinh(κ) − η cosh(ωκ). (63)

Using trigonometric formulae for the hyper functions we write (63) in the form

−2η sinh

[(
1 + ω

2

)
κ

]
sinh

[(
1 − ω

2

)
κ

]
= sinh(κ). (64)

Writing the right-hand side of (64) in the form sinh[(1 + ω)κ/2 + (1 − ω)κ/2] and using the
appropriate sum formula for hyper functions, (64) is transformed into

coth

[(
1 + ω

2

)
κ

]
+ coth

[(
1 − ω

2

)
κ

]
= −2η. (65)

A possible negative-energy state is a non-trivial solution of (65) with κ > 0. Since 0 � ω < 1,
the arguments of the coth functions in (65) are positive, which implies that both coth functions
are larger than 1. This implies the necessary condition

η < −1 (66)

for a non-trivial solution of (65) to exist.
In the scaled case a non-trivial k1 exists for all η. Therefore, we adopt a labelling scheme

that differs slightly from the scheme used in the non-scaling case: we use the label ‘0’ for the
negative-energy state and, therefore, κ0 for the real solution of (62).

5.2. Root separators

For E > 0, the root separators in the scaling case are the same as the root separators in the
non-scaling case. This is immediately obvious since kn(η) can be obtained from kn(v) via a
smooth transformation of the arguments. Thus, since kn(v) is confined to the root intervals
(18), so is kn(η). The only difference occurs for k1(η), which now is defined for all η. Thus
one set of root separators of (58) is

k<
n (η) =

{
nπ for η > 0,

(n − 1)π for η < 0,
k>
n (η) = k<

n (η) + π. (67)

An equally valid set of root separators of (58) is obtained as follows. Writing (58) in the form

cos[k + �(η)] = β(η) cos(ωk), β(η) = η√
1 + η2

,

(68)
�(η) = arccos[β(η)] = arctan(1/η),
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we obtain the root separators

k<
n (η) = nπ − �(η), k>

n (η) = k<
n (η) + π, n = 1, 2, . . . . (69)

While the set (67) of root separators is characterized by simplicity and has advantages for
obtaining concise quadrature and periodic-orbit expansions, the set (69) is valid for both
positive and negative η and for both generic and non-generic levels.

We turn now to the case E < 0. Since κ > 0, we choose κ<
0 = 0. A root separator

κ>
0 may be obtained from (65) according to the following reasoning. For small enough κ and

ω > 0, the left-hand side of (65) is larger than 2|η|. If we require

coth
[
(1 − ω)κ>

0

/
2
] = |η|, (70)

and since coth is a monotonically decreasing function for positive arguments, it is guaranteed
that for ω > 0 the left-hand side of (65) is smaller than 2|η| and that κ<

0 < κ0 < κ>
0 . From

(70) we obtain

κ>
0 = 1

1 − ω
ln

(
η − 1

η + 1

)
, η < −1, ω > 0. (71)

The case ω = 0 is solved in section 6.1; no root separators are required in this case.

5.3. Explicit, integral-free solution formulae

We derive an exact, integral-free formula for the solutions k(s)
n of the transcendental spectral

equation (59) in the following way. In the scaling case, the staircase function (41) is

N(k) = −1 +
k

π
+

�

π
+

2

π

∞∑
m=1

1

m

{
sin(mk)Tm(β) +

β

η
cos(mk)Um−1(β)

}
Tm[β cos(ωk)],

(72)

where we used β and � defined in (68). We use expression (72) in (45) to obtain an integral-free
expression for the spectral points k(s)

n :

k(s)
n = 1

2π

[(
k>
n

)2 − (
k<
n

)2] − 2

π

∞∑
m=1

1

m

{
Tm(β)Sm

(
k<
n , k>

n ;β, ω
)

+
β

η
Um−1(β)Cm

(
k<
n , k>

n ;β, ω
)}

, (73)

where k<
n and k>

n are the root separators defined in (69), the functions Cm(a, b;β, ω) and
Sm(a, b;β, ω) are defined as

Cm(a, b;β, ω) =
∫ b

a

cos(mk)Tm[β cos(ωk)] dk

=
[m/2]∑
µ=0

�mµβm−2µ[cm,m−2µ(b;ω) − cm,m−2µ(a;ω)] (74)

and

Sm(a, b;β, ω) =
∫ b

a

sin(mk)Tm[β cos(ωk)]dk

=
[m/2]∑
µ=0

�mµβm−2µ[sm,m−2µ(b;ω) − sm,m−2µ(a;ω)] (75)
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with

cmν(k;ω) =
∫

cos(mk) cosν(ωk) dk

= 1

2ν

ν∑
µ=0

(
ν

µ

) 


k, if m + νω − 2µω = 0,

sin[(m + νω − 2µω)k]

m + νω − 2µω
, if m + νω − 2µω 
= 0

(76)

and

smν(k;ω) =
∫

sin(mk) cosν(ωk) dk

= 1

2ν

ν∑
µ=0

(
ν

µ

) 


0, if m + νω − 2µω = 0,

− cos[(m + νω − 2µω)k]

m + νω − 2µω
, if m + νω − 2µω 
= 0.

(77)

In the scaling case the reflection and transmission amplitudes (32) are constants given by

r = η

i − η
, t = i

i − η
. (78)

Therefore, the integrals in (54) can be performed analytically. We obtain the following exact,
integral-free periodic-orbit expansions:

k(s)
n = (n + 1)k>

n − nk<
n − 1

2π

[(
k>
n

)2 − (
k<
n

)2] − 1

π

(
k>
n − k<

n

)
�(η)

− 1

π
Im

∞∑
m=1

∑
ŵp

∑
νl̂(ŵp)=m

1

2iν2σ̂ (ŵp)
[(−1)l̂(ŵp)r α̂(ŵp)t β̂(ŵp)]ν

× [
e2iνσ̂ (ŵp)k>

n − e2iνσ̂ (ŵp)k<
n

]
. (79)

In many cases the periodic-orbit expansion (79) simplifies considerably. For generic levels
and η > 0, e.g., (79) reduces to

k(s)
n = nπ +

π

2
− �(η) − 1

π
Im

∞∑
m=1

∑
ŵp

∑
νl̂(ŵp)=m

1

σ̂ (ŵp)ν2

× [(−1)l̂(ŵp)r α̂(ŵp)t β̂(ŵp)]ν ei(2n+1)νπσ̂ (ŵp) sin[νπσ̂ (ŵp)], (80)

where we used the root separators (67).

6. Rational ω

In sections 3–5 we presented a complete solution of the spectral problem of the compressed
(scaling) delta atom using quadratures and periodic-orbit expansions. In some cases, in
particular for rational ω, spectral solutions may be obtained independently using different
solution methods. For instance, for any rational ω, a subset of the spectrum is immediately
known according to (14). Computation of a spectrum via both a periodic-orbit expansion and
a different, independent method offers the possibility to derive as yet unknown combinatorial
identities [8] or to compute the value of infinite sums (see section 6.1).

A host of alternative, independent spectral solutions, e.g., is provided in the scaling case
for some rational ω values (see, e.g., sections 6.1–6.3). In these cases the entire spectrum
of the scaling, compressed delta atom can be computed and expressed explicitly in terms of
radicals. The reason is the following. While even in the scaling case irrational ω produce
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transcendental spectral equations, rational ω produce spectral equations that may be expressed
as polynomial equations. The cases ω = 0, 1/3, 1/2, e.g., lead to polynomial equations of
orders one, two and three, respectively. The complete spectra for these three cases are worked
out explicitly in sections 6.1–6.3, respectively. Not explicitly worked out in this paper are the
cases ω = 1/5, 3/5. They lead to quartic polynomial equations, which, if desired, may be
solved by radicals, too [22].

6.1. ω = 0

From (61) together with (14) the complete E > 0, ω = 0 spectrum is

k
(1)
N = (2N − 1)π + 2 arctan(η),

(81)
k

(2)
N = 2Nπ, N = 1, 2, . . . .

With (65) we obtain for the E < 0 solution

κ0 = ln

(
η − 1

η + 1

)
, η < −1. (82)

Alternatively we may express k
(1,2)
N with the help of quadrature formulae. For E > 0, ω = 0,

the staircase function (72) is

N(k) = −1 +
k

π
+

�

π
+

2

π

∞∑
m=1

1

m

[
sin(mk)Tm(β) +

β

η
cos(mk)Um−1(β)

]
Tm(β). (83)

For 0 < η < ∞, the level k
(1)
1 is found in the root interval [π, 2π ]. Since we are going to use

this root interval as an integration interval, it does not matter that k
(2)
1 coincides with the upper

edge of the root interval. With (45) we obtain

k
(1)
1 = 2π −

∫ 2π

π

N(k) dk. (84)

Equating (81) and (84) we obtain the following sum rule for Chebyshev polynomials:
∞∑

m=1

1

(2m − 1)2
T 2

2m−1(x) = π

4
arctan

(
x2

1 − x2

)1/2

, |x| � 1. (85)

This result illustrates how a combination of quadrature solutions and an independent solution
can be used to compute infinite sums, in this case a sum rule for Chebyshev polynomials.

6.2. ω = 1/3

Using ω = 1/3 in (61) and substituting x = cot(k/3) we obtain the quadratic equation

3x2 + 4ηx − 1 = 0 (86)

with the two solutions

x1,2 = − 2
3η ± 1

3

√
4η2 + 3. (87)

Transforming back to k and supplementing the resulting two solutions with (14) we obtain the
complete E > 0 spectrum

k
(1)
N = 3 arccos

(
1

2
√

1 + η2

√
2η2 + 1 − η

√
4η2 + 3

)
+ 3Nπ,

k
(2)
N = 3 arccos

(
−1

2
√

1 + η2

√
2η2 + 1 + η

√
4η2 + 3

)
+ 3Nπ, (88)

k
(3)
N = 3π + 3Nπ, N = 0, 1, 2, . . . .
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We now turn to the case E < 0. Starting from (65) with ω = 1/3 and x = coth(κ/3) we
obtain the quadratic equation

3x2 + 4xη + 1 = 0. (89)

Solving this equation and using the root that leads to real, positive κ we obtain

κ0 = 3 arccosh

(
1

2
√

η2 − 1

√
2η2 − 1 − η

√
4η2 − 3

)
, η < −1, (90)

where ([23], formula 4.6.21)

arccosh (x) = ln
(
x +

√
x2 − 1

)
. (91)

6.3. ω = 1/2

This case is more difficult than the case ω = 1/3, since it involves the solution of a polynomial
equation of order three. We treat the case E > 0 first. Substituting x = cot(k/4) the spectral
equation (61) for ω = 1/2 is transformed into the cubic equation

x3 + 3
2ηx2 − x − 1

2η = 0. (92)

The roots of (92) are [22]

x1 = −2r cos
(ϕ

3

)
− η

2
, x2 = 2r cos

(π

3
+

ϕ

3

)
− η

2
, x3 = 2r cos

(π

3
− ϕ

3

)
− η

2
,

(93)

where

q = 1

8
η3, r = sign(q)

(
4 + 3η2

12

)1/2

, cos(ϕ) = q/r3. (94)

From (94) together with (14) we obtain the complete E > 0 spectrum

k
(j)

N = 4 arccot(xj ) + 4Nπ, k
(4)
N = 4π + 4Nπ, j = 1, 2, 3, N = 0, 1, 2, . . . .

(95)

For E < 0, we substitute x = coth(κ/4), which turns (65) into

x3 + 3
2ηx2 + x + 1

2η = 0. (96)

Defining

p = 4 − 3η2

12
, r = −

√
|p|, tan(ψ) = [tan(ϕ/2)]1/3,

ϕ =
{

arctan(r3/q), for p > 0,

arcsin(r3/q), for p < 0,
(97)

where q is defined in (94), the real solution of (96) is [22]

ξ =



−2r cot(2ψ) − η/2, for p > 0,

(1 + 21/3)/
√

3, for p = 0,

−[2r/ sin(2ψ)] − η/2, for p < 0.

(98)

With ξ defined in (98) we obtain for E < 0

κ1 = 2 ln

(
ξ + 1

ξ − 1

)
. (99)
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7. Convergence

Since the periodic-orbit expansions (46), (54), (73) and (79) are derived via integration from
a piecewise constant (staircase) function, they converge. In this section we show even more:
the expansions (46), (54), (73) and (79) converge absolutely. The purpose of this section is to
provide the necessary proofs.

We start by proving that (46) is absolutely convergent. To this end, we observe that the
integral in (46) can be cast into trigonometric form according to

Inm(v, ω) =
∫ k>

n

k<
n

{
sin(mk)Tm

(
v√

v2 + k2

)
+

k√
v2 + k2

cos(mk)Um−1

(
v√

v2 + k2

)}

× Tm

(
v√

v2 + k2
cos(ωk)

)
dk

= 1

2

∫ k>
n

k<
n

{sin[mf (+)(k; v, ω)] + sin[mf (−)(k; v, ω)]} dk, (100)

where f (±)(k; v, ω) are the spectral functions (26). For fixed integration limits it is
straightforward to prove∫ b

a

sin[mf (x)] dx ∼
{

1/m, if f ′(x) 
= 0 in [a, b]
1/

√
m, if f ′(x) has simple zeros in [a, b]

(101)

for large m and for any smooth function f (x). Since the derivatives ∂f (±)(k; v, ω)/∂k of the
spectral functions (26) have at most simple zeros, the absolute value of the integral (100) can
be estimated as

|Inm(v, ω)| < γn(v, ω)/
√

m, (102)

where the positive constant γn(v, ω) may depend on n, v and ω, but does not depend on m.
With this result we can estimate the sum in (46) as∣∣∣∣∣

∞∑
m=1

1

m
Inm(v, ω)

∣∣∣∣∣ �
∞∑

m=1

1

m
|Inm(v, ω)| < γn(v, ω)

∞∑
m=1

1

m3/2
= γn(v, ω)ζ(3/2), (103)

where ζ(x) is Riemann’s zeta function [18]. Equation (103) shows that the sum in (46)
converges. But (103) shows even more: sum over the absolute values of the individual terms
of the sum,

∑∞
m=1 |Inm(v, ω)/m|, is finite, too. This shows that the m-sum in (46) is absolutely

convergent. Since the periodic-orbit terms in the m-sum of (54) sum up to the corresponding
m-terms in (46), the m-sum in (54) converges absolutely, too.

We now prove the absolute convergence of (73). Defining

D(M)
n = π

∣∣k(s)
n − k

(s)
n,M

∣∣, (104)

where k
(s)
n,M is an approximation to k(s)

n obtained by including the first M terms in the m sum
of (73), we obtain

D(M)
n =

∣∣∣∣∣
∞∑

m=M+1

1

m

∫ k>
n

k<
n

{sin[mF(+)(k; η, ω)] + sin[mF(−)(k; η, ω)]} dk

∣∣∣∣∣ , (105)

where

F (±)(k; η, ω) = k + arccos[β(η)] ± arccos[β(η) cos(ωk)] (106)

are the scaled versions of the spectral functions (26). Because of the simple structure of
F (±)(k; η, ω) defined in (106), it is straightforward to prove that ∂F (−)(k; η, ω)/∂k > 0 for
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all k and ∂F (+)(k; η, ω)/∂k has at most a countable number of simple zeros. This shows that
D(M)

n < γ̃n(η, ω)/
√

M , where γ̃n(η, ω) > 0 is a constant which may depend only on n, η and
ω, but is independent of M. This implies D(M)

n → 0 for M → ∞. Therefore (73) converges.
Apparently, since each term in the m-sum of (105) ∼ 1/m3/2, the convergence behaviour of
D(M)

n is unchanged if we sum over the absolute values of the m-terms. This means that (73) is
absolutely convergent. Since, up to a global, m-independent constant, each m-term in (79) is
the same as the corresponding term in (73), (79) converges absolutely, too.

One might be tempted to replace �1 = ∑∞
m=1

∑
ŵp

∑
νl̂(ŵp)=m by �2 = ∑

ŵp

∑∞
ν=1 in

the periodic-orbit expansions (53), (54), (79) and (80). But while �1 is absolutely convergent
(we proved it above), �2, in general, is not. Therefore, according to Riemann’s reordering
theorem, it is not guaranteed that �2 converges to the same result as �1. Thus, in general, the
replacement �1 → �2 is not allowed.

So far we proved that the periodic-orbit expansions converge. But do they converge to
the correct spectral values? The answer is yes. Qualitatively the reason is the following.
Since the quadrature formulae and the periodic-orbit expansions are equivalent, and since
the periodic-orbit expansions converge absolutely, the quadrature formulae and the periodic-
orbit expansions converge to the same spectral values. But since the quadrature formulae,
by construction, converge to the correct spectral values, the periodic-orbit expansions do so,
too. More formal proofs can be adapted from the proofs presented in [9, 13, 24]. Thus, in
summary, the periodic-orbit expansions (46), (54), (73) and (79) converge absolutely to the
correct spectral eigenvalues.

8. Discussion

Delta-function potentials provide basic model systems in physics and chemistry. In nuclear
physics, e.g., Skyrme and Gogny potentials are constructed with the help of delta functions and
lead to energy functionals that reproduce the binding energies of atomic nuclei with surprising
accuracy over the entire nuclear chart of stable and unstable nuclei [25]. In quantum chemistry
the nature of atomic and molecular binding is most effectively demonstrated with the help of
delta-function potentials [26]. In atomic physics a ‘kicked delta atom’ has been used to study
time-dependent ionization processes [27]. The compressed delta atom is another well-known
model system that has been used to illustrate important points about perturbation theory [6];
it is discussed in text books (see, e.g., [28], problem 5 on page 164; [29], problems 13.3
on page 300 and 13.4 on page 301). We use the compressed delta atom as an illustrative,
physical system to demonstrate how to solve transcendental spectral equations in order to
obtain the spectral points explicitly, exactly and analytically via quadratures and periodic-
orbit expansions. The solution of the compressed delta atom may be used as a blue print for
the solution of many other quantum systems with transcendental spectral equations.

8.1. Experimental realization

Ten years ago it has been suggested to realize scaling quantum systems as microwave cavities
with dielectric inserts [30]. These microwave systems have the same spectral equations as their
quantum analogues. Several quasi two-dimensional microwave experiments with dielectric
inserts have already been performed successfully [20, 31–33].

A quasi one-dimensional set-up for a scaling step potential has been suggested recently
in [12, 13]. Using a thin dielectric insert, the experimental set-up described in [12, 13] may
be used to implement the scaling, one-dimensional delta atom experimentally.
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8.2. Consistency checks

All analytical results reported in this paper were spot-checked numerically for consistency and
accuracy. Figure 1, e.g., was produced two ways: (i) directly via (46) and (56), respectively;
and (ii) via numerical solution of (5) and (8), respectively. The resulting figures are identical
on the scale of figure 1. The periodic-orbit expansions (52)–(54), (79), (80) were checked
numerically by including prime binary necklaces with code lengths l̂(ŵp) � 15.

The special case v = 0 of (46) provides an example of an analytical consistency check. For
v = 0, we expect kn = nπ . Using T2n+1(0) = U2n+1(0) = 0, T2n(0) = U2n(0) = (−1)n [18]
and the root separators k<

n = (n − 1/2)π, k>
n = (n + 1/2)π , the spectrum kn = nπ is indeed

obtained. Unfortunately this test does not check the m-sum in (46) which happens to be zero in
this case. However, using the asymmetric root separators k<

n = (n−1/4)π, k>
n = (n+ 1/2)π ,

the m-sum in (46) is non-zero and we obtain

kn = nπ +
π

32
− 3

8π

∞∑
m=1

(−1)m+1 1

m2
= nπ, (107)

where we used ([18], formula 0.2341)
∞∑

m=1

(−1)m+1 1

m2
= π2

12
. (108)

8.3. Mathematical aspects

From the mathematical point of view the methods discussed in this paper define procedures
for the explicit, exact and analytical computation of the zeros of almost-periodic functions
[34]. It has been shown earlier [9] that our methods can be used to compute the roots of all
trigonometric equations of the form

N∑
n=1

An cos(ωnx + ϕn) = 0, (109)

where N is finite and An, ωn and ϕn are real constants. The spectral equation (58) is of this
form, and many others may be generated from the scaling, compressed delta atom by changing
the boundary conditions at x = 0, b to Dirichlet at x = 0 and Neumann at x = b (or vice
versa) or Neumann at both x = 0 and x = b or to general Balian–Bloch boundary conditions
of mixed type [10]. All of these different boundary conditions lead to spectral equations of the
form (109) which can be solved exactly, explicitly and analytically by the methods described
in [9] and in this paper.

For the compressed delta atom it is relatively straightforward to obtain the root separators
k<
n and k>

n (see section 2.2). In general the root separators satisfy transcendental equations
which have to be solved in a preliminary step before they can be used to solve for the spectrum.
However, in many cases these root separator equations are themselves of the type (109). In
this case the solution techniques described in this paper and in [9] may be applied first for
finding the root separators and then for finding the spectrum. Details of this multi-step, but
well-defined procedure are described in [9].

Periodic orbits should not be confused with binary necklaces. They are two separate
entities with distinct meanings. The term ‘periodic orbit’ refers to a closed physical trajectory
that a classical particle traces in phase space. A periodic orbit has physical attributes, such
as, e.g., stability, classical action and traversal time. We use ‘binary necklaces’ to label and
enumerate periodic orbits.
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8.4. Explicit solution of the asymptote equation

Let us denote by kn, kn < kn+1, n = 1, 2, . . . the ordered set of solutions of (22). Because of
the simple structure of (22) we find immediately two types of solutions

k
(±)
N = 2π

1 ± ω
N, N = 1, 2, . . . (110)

and we might be tempted to use (110) to construct kn. This, however, cannot be done in a
straightforward way since, in general, k

(+)
N and k

(−)
N interlace in a complicated way with no

regular pattern. However, since (22) is of the form (109), we can apply the methods outlined
in this paper to obtain an explicit, exact solution of (22) in the form kn = . . . . We present the
solution for irrational ω.

First we construct the staircase function. It is given by

N(k) = �2π [(1 − ω)k] + �2π [(1 + ω)k] = −1 +
k

π
+

2

π

∞∑
m=1

1

m
sin(mk) cos(mωk). (111)

We use the staircase (111) in (45) together with the root separators k<
n = nπ and k>

n =
(n + 1)π to obtain

kn = nπ +
π

2
+

1

π

{
1

1 − ω

[
�

(
ξ

(−)
n+1

) − �
(
ξ (−)
n

)]
+

1

1 + ω

[
�

(
ξ

(+)
n+1

) − �
(
ξ (+)
n

)]}
, (112)

where

ξ (±)
n = nπ(1 ± ω) mod 2π (113)

and ([18], formula 1.4433)

�(x) =
∞∑

m=1

1

m2
cos(mx) = π2

6
− πx

2
+

x2

4
, 0 � x � 2π. (114)

While k
(±)
N of (110) satisfy (22), the advantage of (112) is that it also solves the ‘interlacing

problem’, i.e., it provides the solutions of (22) correctly in ascending order.

8.5. Continuum of bound states

In the limit a, b → ∞, ω = const, we obtain a quantum particle in the field of a free delta
function without confining walls. The attractive, scaling case for E < 0 is of particular
interest. In this case, after shifting the origin to the position of the δ function, the potential is
V (x) = V0Kδ(x), where V0 < 0 is a constant and K = √

2m|E|/h̄. The spectral equation is

K

(
1 − m|V0|

h̄2

)
= 0. (115)

This equation is solved either by K = 0, which leads to an unphysical state, or by satisfying
the consistency condition

m|V0|
h̄2 = 1. (116)

If the consistency condition (116) is met, there is a continuum of normalizable, bound states,
i.e., there is a normalizable, bound state at any E < 0. This is a useful pedagogical example to
illustrate that the condition of normalizable wavefunctions does not automatically guarantee
a discrete, countable spectrum.

We note that

v(k) = k sin(k)

cos(k) − cos(ωk)
(117)
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leads to a continuous spectrum of the compressed delta atom, since with this v(k) the spectral
equation (5) (except at the singularities) is identically fulfilled for any k. The energy
dependence (117) of v is not as exotic as it seems and may be realized, at least locally in
k, with a suitable, frequency-dependent dielectric in a set-up similar to the one described in
section 8.1.

8.6. Closed-form solutions

The spectral solutions presented in this paper are of the form (2). Are they ‘closed-form
solutions’? There are various definitions of the term ‘closed-form solution’ in the mathematical
literature. According to the most restrictive definition, a solution is ‘closed form’ only if it
can be expressed with finitely many elementary functions and contains only a finite number
of arithmetical operations. Clearly there is a problem with this ‘definition’, since the set
of ‘elementary functions’ is not well defined. To illustrate, let us look at the formula for
the critical temperature Tc for Bose–Einstein condensation of an ideal gas of spin-zero Bose
particles of mass m at density ρ [35]:

Tc = 2πh̄2

mk

[
ρ

ζ(3/2)

]2/3

, (118)

where k is Boltzmann’s constant and ζ(x) is Riemann’s zeta function [23]. As physicists
we would like to think of (118) as a closed-form expression for Tc. But since ζ(x) is not
ordinarily included in the set of ‘elementary functions’, and moreover known only via its
infinite series expansion [23], expression (118) would not be ‘closed form’ according to the
strictest definition. Clearly we need a definition of ‘closed form’ better suited in the physics
context. If we relax the strictest definition slightly to admit well-defined, convergent, infinite
series as parts of the solution, equations (73), (79) and (80) are integral-free, closed-form
solutions of the spectrum of the scaling, compressed delta atom.

Let us remark in this context that even the trigonometric functions sin(x) and cos(x),
which just about anybody would include in the set of ‘elementary functions’, are transcendental
functions most conveniently defined via their infinite series representations. In this light, rather
than a mere convenience, inclusion of well-defined infinite series in the definition of ‘closed-
form solutions’ appears to be a compelling necessity to achieve logical consistency of the
definition.

8.7. Numerical versus analytical solutions

There is a fundamental difference between numerical and analytical solutions. While
numerically we may only obtain approximate results for selected spectral points, analytical
solutions, such as (73), (79) or (80) represent the exact solution of the entire spectrum in a
single formula. No doubt, therefore, conceptually, analytical solutions are much more powerful
than numerical results. Nevertheless there is an interesting symbiosis between numerical and
analytical techniques when it comes to computing high-accuracy results for selected spectral
points. Suppose we would like to compute kn(v;ω) for given v, ω and n = 7153 713 357.
Although for the computation of specific, selected energy levels numerical methods are much
faster and more convenient to apply than, e.g., a periodic-orbit expansion, numerical methods
are helpless when it comes to targeting a specific state, in this case state number n, when n
is large. A purely numerical method would first have to establish, numerically, an interval in
which to find state number n. But, in order to assure correct labelling, such an interval can be
established only by computing all the other n−1 states with kj < kn, j = 1, . . . , n−1 as well.
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A time-consuming task for sufficiently large n. Here is where a combination of analytical and
numerical techniques is successful. The analytical methods provide the exact root interval
[k<

n , k>
n ] in which to find kn, and, in addition, a low-accuracy starting value k(start)

n inside
the root interval by summing, e.g., the first few periodic orbits. Thus the difference between
analytical and numerical methods may be characterized concisely as follows. While numerical
methods are sharp, specialized tools, analytical solutions are an intellectual advance.

9. Summary and conclusions

The compressed delta atom may be interpreted as a linear quantum graph with two bonds
and three vertices, i.e. a two-pronged star graph [9, 11, 15, 16]. In [9] it was shown that
all quantum graphs are explicitly solvable. However, the proof provided in [9] is a proof
of principle. Each quantum graph provides its own ideosyncratic problems. For instance, it
is often not straightforward to obtain the root separators of the spectrum. Therefore, actual
worked solutions are still rare.

Following the program outlined in [9], this paper provides explicit spectral solutions of
the compressed delta atom via quadratures and periodic-orbit expansions. Four qualitatively
different cases—scaling and non-scaling, E > 0 and E < 0—are considered. Apart from
the step-in-a-box potential [9, 11–13] and the finite square-well potential [14] the compressed
delta atom is only the third physical system that has been solved explicitly using the methods
of [9].

While it is interesting to know that the compressed delta atom can be solved explicitly,
the main thrust of this paper is not on solving an isolated problem, but to illustrate the power
of a recently suggested solution technique and to provide a template for the solution of other
one-dimensional and quasi-one-dimensional (quantum graph) problems. It should, e.g., be
possible to compute explicit solutions of Anderson localizing systems consisting of trains of
delta functions with random potential strengths. In addition, with explicit solutions at hand, it
should be possible to obtain deeper, analytical insight into the spectral statistics of (dressed)
quantum graphs and Anderson localizing systems.
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Appendix. Delta-limit of the finite square-well potential

Recently the finite square well was solved explicitly in [14]. We confirm here that the explicit
formula for the ground-state energy of the finite square well (formula (24) in [14]) gives
the correct binding energy of a δ function in the limit of vanishing width of the well. It
is worth presenting the proof in this appendix since the derivations contain pitfalls such as
non-commuting double limits (v0 → 0,m → ∞) which lead to non-uniformly convergent
sums.

In [14] the depth of the square well is denoted by V0 > 0 and its width is 2a. It becomes
an attractive δ-function potential in the limit of a → 0 keeping Vδ = −2aV0 constant. We call
this limit the delta limit. The energy levels of the well in [14] are counted from the bottom of
the well. Therefore, in the delta limit, we expect

(
ξ

(+)
0

)2 = 2ma2

h̄2 (V0 + Eδ) = v2
0

(
1 − v2

0

)
, (A.1)
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where Eδ < 0 is the binding energy of the δ function, ξ
(+)
0 , as defined in [14], is the

dimensionless wavenumber of the finite square well’s ground state and v0 = √
ma|Vδ|/h̄

is the dimensionless potential depth, respectively. Apparently, v0 → 0 in the delta limit.
Therefore, in the delta limit, we expect

ξ
(+)
0 = v0 − 1

2v3
0 (A.2)

up to third order in v0.
We show now that ξ

(+)
0 , as stated explicitly in (24) of [14], equals (A.2) up to third order in

v0. This is all we have to show in order to prove that (24) of [14] yields the correct delta limit,
since the contributions of the higher powers of v0 are zero when (A.2) is used to compute Eδ .

According to (20) of [14], we have b
(+)
0 = v0. This turns (24) of [14] into

ξ
(+)
0 = − v2

0

2π
+

v0

2
+

v0

π
− v0

π
g(v0), (A.3)

where

g(v0) =
∞∑

m=1

1

m
fm(v0) (A.4)

and

fm(v0) =
∫ 1

0
sin[2mv0ξ − 2m arccos(ξ)] dξ. (A.5)

We obtain

g(v0 = 0) = 2
∞∑

m=1

(−1)m
1

4m2 − 1
= 1 − π

2
,

g′(v0 = 0) = −
∞∑

m=1

1

4m2 − 1
= −1

2
, (A.6)

g′′(v0 = 0) = 32
∞∑

m=1

(−1)m
m2

(4m2 − 9)(4m2 − 1)
= π.

We note that g(v0 = 0) and g′(v0 = 0) can be obtained from term-by-term differentiation of
(A.4). The series

h(v0) =
∞∑

m=1

f ′′
m(v0)/m, (A.7)

however, is not uniformly convergent in the vicinity of v0 = 0. In fact we have

lim
v0→0

h(v0) = π = 2h(v0 = 0). (A.8)

This has been incorporated in the third equation of (A.6). With (A.6) we obtain up to second
order

g(v0) = 1 − π

2
− 1

2
v0 +

π

2
v2

0 . (A.9)

Using (A.9) in (A.3) yields (A.2). This shows that (24) of [14] has the correct delta limit.
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